Vacuum Solutions for Ion Thruster Testing

Stefan Lausberg
Application & Product Support

VA 1.2 Mon 9:45 H25
DPG-Frühjahrstagung Regensburg 2016
Vacuum Solutions for Ion Thruster Testing

<table>
<thead>
<tr>
<th></th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ion Thruster Testing - Requirements</td>
</tr>
<tr>
<td>2</td>
<td>Standard Cryopumps</td>
</tr>
<tr>
<td>3</td>
<td>Cryo Panels for Ion Thrusters</td>
</tr>
<tr>
<td>4</td>
<td>Vacuum Systems for Thruster Testing</td>
</tr>
<tr>
<td></td>
<td>Section</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Ion Thruster Testing - Requirements</td>
</tr>
<tr>
<td>2</td>
<td>Standard Cryopumps</td>
</tr>
<tr>
<td>3</td>
<td>Cryo Panels for Ion Thrusters</td>
</tr>
<tr>
<td>4</td>
<td>Vacuum Systems for Thruster Testing</td>
</tr>
</tbody>
</table>
Ion Thruster Testing - Requirements

Q.: Why ion thrusters? Why Xe?

A.: - Keeping satellites in position
- Moving space crafts to Mars, Jupiter and beyond

<table>
<thead>
<tr>
<th>Typical Parameters</th>
<th>Xe flow</th>
<th>process pressure</th>
<th>pumping speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 mg/s</td>
<td>$1 \cdot 10^{-5}$ mbar</td>
<td>19'000 l/s</td>
</tr>
</tbody>
</table>

- TMPs are too small/expensive; rotor becomes hot through Xe pumping
- Diffusion pump oil contaminates Xe thrusters
- standard cryopumps have less than 50 % of their nominal pumping speed for Xe
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ion Thruster Testing - Requirements</td>
</tr>
<tr>
<td>2</td>
<td>Standard Cryopumps</td>
</tr>
<tr>
<td>3</td>
<td>Cryo Panels for Ion Thrusters</td>
</tr>
<tr>
<td>4</td>
<td>Vacuum Systems for Thruster Testing</td>
</tr>
</tbody>
</table>
Condensing gases

saturation vapour pressure p (mbar)

condensation temperatures

$20\, K$ $80\, K$

N_2, Ar, O_2, CH_4, Xe, CO_2, H_2O
Standard Cryopumps - Working Principle

- **Vacuum chamber**: \(\approx 10 - 20 \text{ K} \)
- **Activated charcoal**: \(\approx 80 \text{ K} \)

- Condensed at higher temperatures: \(\text{H}_2\text{O}, \text{CO}_2 \)
- Condensed at low temperatures: \(\text{N}_2, \text{Ar}, \text{Xe}, \text{O}_2 \)
- **Adsorbed** on activated charcoal: \(\text{H}_2, \text{He}, \text{Ne} \)
Efficiency of the cryopump

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Molar Mass (g/mol)</th>
<th>S / A (l/s*cm²)</th>
<th>Mean Velocity \bar{c} (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>2</td>
<td>44.0</td>
<td>1761</td>
</tr>
<tr>
<td>He</td>
<td>4</td>
<td>31.1</td>
<td>1245</td>
</tr>
<tr>
<td>H₂O</td>
<td>18</td>
<td>14.7</td>
<td>587</td>
</tr>
<tr>
<td>N₂</td>
<td>28</td>
<td>11.8</td>
<td>471</td>
</tr>
<tr>
<td>Ar</td>
<td>39.9</td>
<td>9.9</td>
<td>394</td>
</tr>
<tr>
<td>Xe</td>
<td>131.3</td>
<td>5.4</td>
<td>217</td>
</tr>
</tbody>
</table>

\[
\bar{c} = \sqrt{\frac{8 \cdot R \cdot T}{\pi \cdot M}}
\]

Nominal pumping speed:
- 10'000 l/s for nitrogen
- 4'600 l/s for xenon

\[
\sqrt{\frac{M(N₂)}{M(Xe)}} = \sqrt{\frac{28}{131.3}} = 0.46
\]

\Rightarrow 4'600 l/s for xenon
Vacuum Solutions for Ion Thruster Testing

1 Ion Thruster Testing - Requirements

2 Standard Cryopumps

3 Cryo Panels for Ion Thrusters

4 Vacuum Systems for Thruster Testing
Cryogenic Options for Xenon Pumping

- COOLPOWER 140 T + cryo panel
 - 10'300 l/s for xenon

- Standard cryopump
 - 4'600 l/s for xenon
Design of Cryo Panel

- chamber wall
- cold head
- heater
- Ni-plated copper
- MLI

Xenon gas from thruster (at room temperature)
Theoretical Pumping Speed for Xe

\[S = A_K \ 3.64 \ \alpha_c \ \sqrt{\frac{T_G}{M}} \left(1 - \frac{p_K}{\alpha_c \ p_G \ \sqrt{\frac{T_G}{T_K}}}\right) \]

- \(p_G \) = process pressure
- \(p_K \) = saturation vapour pressure
- \(T_G \) = gas temperature
- \(T_K \) = temperature of cryo panel (K)
- \(S \) = pumping speed of cryo panel (l/s)
- \(A_K \) = area of cryo-panel in (cm²)
- \(\alpha_c \) = Sticking coeffizient
- \(M \) = molar mass (g/mol)

For \(p_G >> p_K \), \(\alpha_c \approx 1 \) \(\Rightarrow S = 3.64 \times A \times \sqrt{\frac{T_G}{M}} \)

Xenon (\(M = 131.3 \) g/mol; \(T_G = 293 \) K) \(\Rightarrow S/A = 5.44 \ell/s \ cm^2 \)
Theoretical Pumping Speed for Xe

\[
S \text{ (l/s*cm}^2) \quad T \text{ (K)}
\]

\[
10^{-6} \text{ mbar}
\]

\[
56 \text{ K}
\]

© Oerlikon Leybold Vacuum – DPG-Frühjahrstagung Regensburg – Stefan Lausberg - 2016-03-07
Theoretical Pumping Speed for Xe

![Graph showing the theoretical pumping speed for Xe as a function of temperature and pressure. The graph includes a logarithmic scale for pressure and a linear scale for temperature. Key points include:

- A horizontal line at 5.5 S (l/s*cm²) for all T (K) values.
- A curve starting from high pressure and decreasing sharply with increasing temperature, indicating the pumping speed decreases as temperature increases.

The graph also shows two pressure levels: 10⁻⁵ mbar and 10⁻⁶ mbar, with corresponding temperature ranges for each.]

© Oerlikon Leybold Vacuum – DPG-Frühjahrstagung Regensburg – Stefan Lausberg - 2016-03-07
Theoretical Pumping Speed for Xe

![Graph showing theoretical pumping speed for Xe](image)

- Horizontal axis: Temperature T (K)
- Vertical axis: Pumping speed S (l/s cm2)

Inset graph showing the pumping speed for various gases at different temperatures.

- N_2, Ar, O_2, CH_4, Xe, CO, H_2O
- Temperature range: 10 to 150 K
- Pressure levels: 10^{-4}, 10^{-5}, 10^{-6} mbar

Key points:
- 65 K
- 10^{-4} mbar
- 10^{-5} mbar
- 10^{-6} mbar

Legend:
- Yellow shade: Depicts a specific aspect of the graph.
Theoretical Pumping Speed for Xe

![Graph showing theoretical pumping speed for Xe with temperature (K) on the x-axis and pumping speed (l/s*cm²) on the y-axis. The graph indicates a decrease in pumping speed as temperature increases, with specific points labeled at 53 K, 58 K, and 10⁻⁵ mbar.]
COOLPOWER 140 T – Load Map

- Required temperature range for xenon

![Graph showing cooling capacity versus temperature for COOLPOWER 140 T](image)
maximum load at 45 K for CP 140 T: \(Q_{\text{th}} \sim 85 \text{ W} \)

surrounding temperature: \(T = 300 \text{ K} \)

very thick Xenon layers: \(\varepsilon_r \sim 0.9 \)

Thermal law of radiation: \(Q_{\text{th}} = \sigma \ T^4 \ A \)

\[Q_{\text{th}} / A = 0.041 \text{ W} / \text{cm}^2 \]

\[\text{max. surface of cryopanel:} \quad A \sim 85 / 0.041 \text{ cm}^2 \sim 2,100 \text{ cm}^2 \]

\[\text{pumping speed:} \quad S_{\text{Xe}} \sim 2,100 \cdot 5.44 \text{ l/s} \sim 11,400 \text{ l/s} \]

COOLVAC 10'000 iCL: \(S_{\text{Xe}} \sim 4,600 \text{ l/s} \)
Cryo Panel measurement

- mass spectrometer
- gas inlet
- hot cathode gauge
- TMP + backing pump
- PMMA disc
- PNEUROP vessel
- metal disc
- silicon diode
- electrical heater
- electrical feedthrough
- to helium compressor
- cold head motor cable

11'400 ℓ/s - 10 %
10'300 ℓ/s

safety margin

© Oerlikon Leybold Vacuum – DPG-Frühjahrstagung Regensburg – Stefan Lausberg - 2016-03-07
Cryo Panel vs Standard Cryopump

- no additional high vacuum pumps required
- heating of the first stage to prevent xenon hangup is necessary or
- severe reduction of baffle temperature while enhancing the corresponding cooling capacity is necessary
- low capacity of hydrogen and helium (TMP → infinite "capacity")

- simple concept - much larger pumping speed in comparison to standard cryo pumps
- usually more pumping speed per Euro in comparison to standard cryo pumps
- no capacity issue concerning hydrogen and helium due to use of TMPs
- additional high vacuum pumps (usually TMP) are needed
Vacuum Solutions for Ion Thruster Testing

<table>
<thead>
<tr>
<th></th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ion Thruster Testing - Requirements</td>
</tr>
<tr>
<td>2</td>
<td>Standard Cryopumps</td>
</tr>
<tr>
<td>3</td>
<td>Cryo Panels for Ion Thrusters</td>
</tr>
<tr>
<td>4</td>
<td>Vacuum Systems for Thruster Testing</td>
</tr>
</tbody>
</table>
Vacuum Systems for Thruster Testing

Simulation Chamber
Typical configuration

- chamber size?
- material / desorption rate?
- heat?
Vacuum diagram for a 1.5 m³ Chamber

Unistat
-65°C
+80 °C

COOLPOWER 140 T

COOLPAK 6000 H

MAG 2800

WSU 251

D 65 B
Thank you for your attention

Our booth: No. 108 (Tent)

© by courtesy of University Carlos III, Madrid, Spain